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GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter
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ATMOSPHERIC
RADIATION

Energy per area per
time

Power per area

Unit:
Watt per square meter
W m-2
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ATMOSPHERIC CARBON DIOXIDE IS INCREASING

Global carbon dioxide concentration and infrared radiative forcing 
over the last thousand years

Polar ice cores
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A change in a radiative flux term in Earth’s
radiation budget, F, W m-2.

Working hypothesis:
On a global basis radiative forcings are additive and
fungible.

• This hypothesis is fundamental to the radiative
forcing concept.

• This hypothesis underlies much of the assessment of
climate change over the industrial period.
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RADIATIVE FORCING OF CLIMATE CHANGE



GREENHOUSE GAS FORCINGS OVER THE INDUSTRIAL PERIOD
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THE “BIBLE” OF CLIMATE CHANGE RESEARCH

WMO

Cambridge University Press, 2001
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AEROSOL INFLUENCES ON
RADIATION BUDGET AND CLIMATE

Direct Effect (Cloud-free sky)
Light scattering -- Cooling influence
Light absorption -- Warming influence, depending on surface

Indirect Effects (Aerosols influence cloud properties)
More droplets -- Brighter clouds (Twomey)
More droplets -- Enhanced cloud lifetime (Albrecht)

Semi-Direct Effect
Absorbing aerosol heats air and evaporates clouds



RADIATIVE FORCING OF CLIMATE CHANGE BY AEROSOLS

steve
THE “WHITEHOUSE EFFECT”
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THE TWOMEY EFFECT

PHYSICAL BASIS AND SENSITIVITY



DEPENDENCE OF CLOUD ALBEDO ON CLOUD DEPTH
Influence of Cloud Drop Radius and Concentration
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Twomey, Atmospheric Aerosols, 1977

For a given liquid water path, cloud albedo is highly sensitive to cloud
drop number concentration or radius.
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TWOMEY SENITIVITY
Dependence on cloud-top reflectance
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Sensitivity is greatest for clouds of intermediate optical depth.

For dR d NCT cd/ ln .= 0 08 = 0.08, a 10% increase in Ncd increases

cloud-top reflectivity by 0.008.



SENSITIVITY OF ALBEDO AND FORCING
TO CLOUD DROP CONCENTRATION
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Indirect forcing is highly sensitive to small perturbations in cloud drop
concentration.

A 30% increase in cloud drop concentration results in a forcing of ~1 W m-2.



INDIRECT (TWOMEY) FORCING
Dependence on incremental cloud drop concentration ∆N  and

Sensitivity to initial cloud drop concentration N0
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Aerosol indirect forcing is highly sensitive to background CCN concentration.



RELATION BETWEEN
AEROSOL CONCENTRATIONS

AND
CLOUD DROP CONCENTRATIONS



CLOUD MICROPHYSICAL PROPERTIES
AND SATELLITE VISIBLE RADIANCE

ASTEX, Northeast Atlantic, June, 1992

Albrecht et al., BAMS, 1995
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FRACTIONAL UPTAKE OF ACCUMULATION
MODE PARTICLES INTO CLOUDWATER
Aircraft measurements of ASASP (0.17 - 2 µm diameter)

 and FSSP (2 - 35 µm diameter) particles

Gillani et al., JGR, 1995



FRACTION OF ACTIVATED AEROSOL PARTICLES
Dependence on particle number concentration

Gillani et al., JGR, 1995



FRACTION OF ACTIVATED AEROSOL PARTICLES
Dependence on Lapse Rate and Liquid Water Content

 
Gillani et al., JGR, 1995



PRISTINE vs. POLLUTED CLOUDS IN INDOEX
In-situ aircraft measurements during cross-Equatorial transects

Classified by concentration of aerosol particles

LWC CDNC

Heymsfield and McFarquhar, JGR, 2001
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Heymsfield and McFarquhar, JGR, 2001



CLOUD DROP NUMBER CONCENTRATION
Dependence on accumulation-mode aerosol particle

concentration

 Chuang et al., 2000

Ncd increases with increasing Nap, but scatter at any Nap is comparable

to increase in Ncd over range of Nap.



CLOUD DROP NUMBER CONCENTRATION
Dependence on below-cloud aerosol particle concentration

Stratified by turbulent intensity

Leaitch et al., JGR, 1996



SHORTWAVE FORCING, ANNUAL AVERAGE
GHG's + O3 + Sulfate (Direct and Indirect)

Two Formulations of Cloud Droplet Concentration

Kiehl et al.,  JGR, 2000

steve
Indirect forcing is highly sensitive to the assumed relation between sulfate concentration and cloud droplet number concentration.



SEARCH FOR INDIRECT EFFECT IN
INTERHEMISPHERIC COMPARISONS



INTERHEMISPHERIC COMPARISON OF ALBEDO COMPONENTS
Data from Nimbus 4

Schwartz (1989)



LONGITUDE DEPENDENCE OF CLOUD ALBEDO
Test for Anthropogenic Influence in Northern Hemisphere

vs. Southern Hemisphere as Control

Kim and Cess, JGR, 1994



EXAMINATION FOR INDIRECT EFFECT IN
INTERHEMISPHERIC COMPARISONS

Zonal-mean cloud drop effective radius

Han, Rossow, and Lacis, 1994

Smaller effective radius in NH would be indicative of greater cloud

drop concentration due to industrial aerosol.



EXAMINATION FOR INDIRECT EFFECT IN
INTERHEMISPHERIC COMPARISONS

Zonal-mean cloud drop effective radius and cloud albedo

Han et al., 1998

Interhemispheric difference in effective radius is not exhibited in cloud albedo.
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EXAMINATION FOR INDIRECT EFFECT IN
INTERHEMISPHERIC COMPARISONS

Zonal-mean cloud drop effective radius and liquid water path

Han et al., 1998

Smaller effective radius in NH is negated by lower LWP.
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EXAMINATION FOR INDIRECT EFFECT IN
INTERHEMISPHERIC COMPARISONS

Zonal-mean cloud drop effective radius and albedo
for assumed constant LWP

Han et al., 1998
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USING RESULTS FROM A CHEMICAL
TRANSPORT MODEL TO IDENTIFY

SITUATIONS OF HIGH AEROSOL LOADING
TO PINPOINT AEROSOL INDIRECT EFFECT



ASSOCIATION DOES NOT NECESSARILY
EQUAL CAUSALITY

Chameides et al., 2002



ASSOCIATION DOES NOT NECESSARILY
EQUAL CAUSALITY

Chameides et al., 2002

“The dog in the sky eats the sun.”



MODELED SULFATE COLUMN BURDEN
[ ]SO4

2−∫ dz

April 2-8, 1987

Schwartz, Harshvardhan & Benkovitz, PNAS, 2002



AVHRR IMAGES APRIL 2-8, 1987
Channel 1, Visible, 0.58-0.68 µm

Harshvardhan, Schwartz, Benkovitz and Guo, J Atmos Sci, 2002



CLOUD OPTICAL DEPTH
Dependence on Liquid Water Path

25˚-30˚W, 50˚-55˚N      April 2-8, 1987
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CLOUD-TOP ALBEDO
Dependence on Liquid Water Path

25˚-30˚W, 50˚-55˚N      April 2, 5 and 7,1987
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SULFATE COLUMN BURDEN,
CLOUD PROPERTIES

AND INDIRECT FORCING

Mid North Atlantic (25-30˚W, 50-55˚N),
April 2-8, 1987

Sulfate from chemical transport model
(Benkovitz et al., JGR, 1997)

Cloud drop effective radius and cloud
optical depth from satellite retrievals

(Harshvardhan et al., JAS, 2002)

∆ spherical albedo is calculated relative
to median effective radius on April 2

(16.5 µm) for retrieved LWP
 (Schwartz et al., PNAS, 2002)

Forcing is calculated for median
effective radius relative to April 2;

solar zenith angle 60˚; LWP 100 g m-2
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QUANTIFICATION OF AEROSOL INDIRECT
FORCING IN GROUND-BASED REMOTE

SENSING



GROUND BASED REMOTE SENSING OF CLOUD PROPERTIES
North Central Oklahoma, April 13, 2000      Local time = UTC - 6h
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RELATION BETWEEN ATMOSPHERIC
TRANSMITTANCE AND CLOUD OPTICAL DEPTH
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GROUND BASED REMOTE SENSING OF CLOUD PROPERTIES
North Central Oklahoma, April 13, 2000 – Local time =  UTC - 6
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MEASURING CLOUD DROP EFFECTIVE RADIUS
BY GROUND BASED REMOTE SENSING

Effective radius: Cloud or aerosol property important for radiative transfer

For a homogeneous volume r
N r r dr
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GROUND BASED REMOTE SENSING OF CLOUD PROPERTIES
North Central Oklahoma, April 13, 2000 – Local time =  UTC - 6
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CLOUD OPTICAL DEPTH VS. LIQUID WATER PATH

North Central Oklahoma, 2000
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Optical depth is highly correlated with and strongly dependent on liquid
water path.

Tight cluster of points about a diagonal line through the origin is
indicative of constant effective radius over the day.

Slope is inversely proportional to effective radius.

F, fraction of variance accounted for by regression = 96%.



CLOUD OPTICAL DEPTH VS. LIQUID WATER PATH
North Central Oklahoma, 2000
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F, fraction of variance accounted for by regression, mainly > 80%.



CLOUD OPTICAL DEPTH VS. LIQUID WATER PATH
North Central Oklahoma, 2000, aggregated by days
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Fraction of variance accounted for by regression, 74%.

Days with smaller radii have a greater optical depth for a given LWP.



CLOUD ALBEDO CALCULATED FROM MEASURED
EFFECTIVE RADIUS AND LIQUID WATER PATH

North Central Oklahoma
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COMPARISON OF MEASURED AND MODELED
DOWNWELLING SURFACE IRRADIANCE

North Central Oklahoma, uniform overcast sky
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SBDART Radiation transfer model.
LWP from microwave radiometer; optical depth from narrow band radiometry at 415 nm.



CALCULATED SURFACE AND TOP-OF-ATMOSPHERE
FORCING RELATIVE TO REFERENCE EFFECTIVE RADIUS

(re = 10.2 µm)
Dependence on Cloud-top Reflectance

Kim and Schwartz, in preparation, 2004

SBDART Radiation transfer model; SZA = 60˚.



CALCULATED TOP-OF-ATMOSPHERE FORCING RELATIVE
TO REFERENCE EFFECTIVE RADIUS (re = 10.2 µm)

North Central Oklahoma, uniform overcast sky

               

Kim and Schwartz, in preparation, 2004

SBDART Radiation transfer model.
LWP from microwave radiometer; optical depth from narrow band radiometry at 415 nm.



CORRELATION OF CLOUD DROP EFFECTIVE RADIUS
AND AEROSOL LIGHT SCATTERING COEFFICIENT

North Central Oklahoma
All days in 2000 meeting complete overcast criterion

R2 = 0.24
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CONCLUDING REMARKS



UNCERTAINTY BUDGET FOR INDIRECT FORCING
BY INDUSTRIAL AEROSOLS

Quantity Central
Value

2/3 Uncertainty
Range

Background Nd for Northern Hemisphere marine (cm— 3) 140 66 to 214
Perturbed Nd for Northern Hemisphere marine (cm— 3) 217 124 to 310
Cloud mean liquid water content (LWC) (g m—3 ) 0.225 0.125 to 0.325
Background sulfate concentration ( g m—3 ) 1.5 0.85 to 2.15
Cloud layer thickness (m) 200 100 to 300
Perturbed sulfate concentration ( g m—3 ) 3.6 2.4 to 4.8
Susceptible cloud fraction, fc 0.24 0.19 to 0.29
Atmospheric transmission above cloud layer, Ta 0.92 0.78 to 1.00
Mean surface albedo 0.06 0.03 to 0.09
Result: If central value is -1.4 Wm -2 the 2/3 uncertainty range is from 0 to -2.8 Wm -2.
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Modified from Penner et al., IPCC, 2001

The greatest uncertainties are in aerosol and cloud
microphysics properties, such as dependence of cloud
drop concentration on aerosol composition, loading,
and microphysical properties.

These uncertainties are not well quantified.
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SEASALT AEROSOL MASS CONCENTRATION
Modeled and observed annual concentrations

From IPCC (2001) intercomparison
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“After throwing out the burdens from models that were outliers in
terms of their comparison with observations, the model results for sea
salt still differed by a factor of 4.9 and 5.3, for diameter less than and
greater than 2 µm, respectively. . . .  In the upper troposphere . . . the
range increased to as much as a factor of 20 or more.”



WHY SO LARGE UNCERTAINTY IN
AEROSOL FORCING?

• Uncertainties in knowledge of atmospheric composition

Mass loading and chemical and microphysical properties and cloud
nucleating properties of anthropogenic aerosols, and geographical
distribution.

At present and as a function of secular time.

• Uncertainties in knowledge of atmospheric physics of aerosols

Relating direct radiative forcing and cloud modification by aerosols to
their loading and their chemical and microphysical properties.
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With total aerosol forcing
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Quantities and processes governing aerosol indirect forcing
of climate change and the quantities on which their

dependence must be known
Quantity/Process Symbol Dependence on

Particle and gaseous precursor
emissions

e(x, t, rap, χ) Radius rap, composition χ

Transport, chemical reaction,
microphysical evolution

↓ Concentrations of precursors and other reagents,
solar intensity; size dependent concentrations
of other aerosol species; 3-D winds, clouds . . .

Aerosol particle number
concentration

nap(x, t, rap, χ) Radius, composition

Supersaturation spectrum nccn(s) Radius, composition, supersaturations
Cloud formation and dissipation ↓ nccn(s), updraft velocity, turbulent intensity,

precipitation development, heating rate,
entrainment . . .

Cloud drop number concentration
and properties

ncd(x, t, rcd, ω(λ)) Radius, single scatter albedo ω, wavelength λ

Cloud optics ↓ Cloud drop size distribution, Mie scattering

Cloud drop scattering and
absorption coefficients

{σsc, σac}(x, t, λ) Absorption by dissolved and suspended materials

Vertical integral ↓ Updrafts, entrainment

Cloud scattering and absorption
optical depth

{τsc, τac}(x, t, λ) Cloud physical depth, liquid water path

Radiation transfer (3D) ↓ Cloud geometry, surface reflectance

Net spectral flux at top of
atmosphere

Ftoa(x, t, λ)



ISSUES IN  DETERMINING AEROSOL
INDIRECT FORCING

1. Enhancement in aerosol particle concentration (and size, composition,
etc.) between preindustrial and present, as function of location.

2. Relation between aerosol particle concentration (and size, composition,
etc.) and cloud droplet concentration.

3. Relation between cloud drop concentration and cloud reflectance.

4. Aerosol influences on LWP, cloud lifetime, etc., in addition to
reflectance.

These requirements can be met only by models – models that are
evaluated by comparison with observation
Emissions models

Chemical transport and transformation models
Cloud drop activation and microphysics models

Radiation transfer models



Thank you!
Stephen E. Schwartz

http://www.ecd.bnl.gov/steve/schwartz.html




